A new clustering method and its application in social networks
نویسندگان
چکیده
In a graph theory model, clustering is the process of division of vertices into groups, with a higher density of edges within groups than between them. In this paper, we introduce a new clustering method for detecting such groups and use it to analyse some classic social networks. The new method has two distinguished features: non-binary hierarchical tree and the feature of overlapping clustering. A non-binary hierarchical tree is much smaller than the binary-trees constructed by most traditional methods and, therefore, it clearly highlights meaningful clusters which significantly reduces further manual efforts for cluster selections. The present method is tested by several bench mark data sets for which the community structure was known beforehand and the results indicate that it is a sensitive and accurate method for extracting community structure from social networks. 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Sampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملUsing a New Method to Incorporate the Load Uncertainty into the SEP Problem
In this paper, a new method is conducted for incorporating the forecasted load uncertainty into the Substation Expansion Planning (SEP) problem. This method is based on the fuzzy clustering, where the location and value of each forecasted load center is modeled by employing the probability density function according to the percentage of uncertainty. After discretization of these functions, the ...
متن کاملA new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy
In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...
متن کاملA New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption
Clustering is an effective approach for managing nodes in Wireless Sensor Network (WSN). A new method of clustering mechanism with using Binary Gravitational Search Algorithm (BGSA) in WSN, is proposed in this paper to improve the energy consumption of the sensor nodes. Reducing the energy consumption of sensors in WSNs is the objective of this paper that is through selecting the sub optimum se...
متن کاملData Analysis Methods in Social Networks
Background and Aim. The promising outlook of easy communication incurring minimum cost has caused social networks to face increasing number of active members each day. These members develop and expand international communication through information sharing including personal information. Thus, big data analysis of social networks provides companies, organizations and governments with ample and ...
متن کاملAn Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks
Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 32 شماره
صفحات -
تاریخ انتشار 2011